

NIST Smart Manufacturing Systems Test Bed

Moneer Helu, Tom Hedberg, and Bill Bernstein Systems Integration Division

Disclaimer

 Identification of commercial systems does not imply recommendation or endorsement by NIST

 Identified commercial systems are not necessarily the best available for the purpose

Lifecycle Information Framework

Current Challenges

- PLM solutions:
 - CAx: CAD, CAE, CAM, etc.
 - PDM
 - V&V

Primarily IT; Engineering focused; Relatively expensive

- Operations solutions:
 - Devices, SCADA, PLC
 - MES, MOM
 - ERP

Mixture of IT and OT; Lack of integration across control levels

Integration of heterogeneous solutions across the product lifecycle for SMEs and larger organizations

NIST Smart Mfg. Systems Test Bed

Goals:

- Reference architecture and implementation
- Rich source of data for research community
- Physical infrastructure for standards and technology development
- Demonstration test cases
- Improvements in Fabrication Technology operations

Prototype complete

Full deployment <u>May 1st</u>

Data Collection and Aggregation

Shop-Floor Implementation

MTConnect: Key Mfg. Standard

Public and Private Web Services

- Public web service
 - Volatile data streams of manufacturing data from processes and equipment
 - Query-able database repository
 - Data packages for testing, verification, and validation
- Private web service
 - Similar to public web service except includes data and information shared internally that is not ready for public release

Volatile Data Stream

instanceId: 1459827175

version: 1.3.0.16

bufferSize: 131072

nextSequence: 214354

firstSequence: 83282

lastSequence: 214353

Target Launch Date: May 1st

Device: NIST-SMS-TestBed-5Axis; UUID: nist_testbed_GF_Agie_1_3a0e8a

Rotary: A

Samples

Timestamp	Туре	Sub Type	Name	Id	Sequence	Value
2016-04-05T14:11:29.684741	Anale	ACTUAL	Aposition	A 92	207523	-0.0001

Rotary : C Samples

Timestamp	Туре	Sub Type	Name	Id	Sequence	Value
2016-04-05T12:48:28.634491	Angle	ACTUAL	Cposition	C_90	181108	0.0278

Device: NIST-SMS-TestBed-5Axis

Events

Timestamp	Туре	Sub Type	Name	Id	Sequence	Value
2016-04- 05T14:10:55.190783	AssetChanged			GF_Agie_1_78_asset_chg		.06_FEM- 3FLT
2016-04- 05T03:32:55.976037Z	AssetRemoved			GF_Agie_1_78_asset_rem	69	UNAVAILABLE
2016-04- 05T11:11:21.617246	Availability		avail	dtop_79	123411	AVAILABLE
2016-04- 05T11:11:21.617353	EmergencyStop		estop	dtop_80	123412	ARMED

12 APR 2016 2016 MBE Summit

Virtual Factory Data

- Test bed can serve as virtual factory since data is presented for each process or equipment on shop floor
- Data does not need to be validated against a real system
- Data is presented in "raw" form including any deficiencies expected from industrial environments
- Data enables fabrication-focused research, including:
 - Data preprocessing, validation, robustness, and quality
 - Condition monitoring, diagnosis, and prognosis
 - Process monitoring and data analytics

Standards and Technology Development

Test and validate enhancements to standards

12 APR 2016

- Integrate domain standards to connect information across design and manufacturing
- Develop optimized data packages for technology verification and validation

2016 MBE Summit

Demonstration: Feed Analysis

- Feed influences:
 - Quality of finished machined surface
 - Time required to complete operation
- Acceleration of feed drives causes discrepancy between actual and commanded feed

Important to identify where and when discrepancy occurs

Vijayaraghavan et al. (2008)

Demonstration: Feed Analysis

Applying Info to Improve Processes

- [**Design**] Can we redesign geometry to avoid the need for toolpaths with high feed discrepancies?
- [*Planning*] Can we redesign toolpath to minimize impact of machine dynamics?
- [Machining] Can we enable operator to make informed decisions?
- [Inspection] Can we use information to identify areas for more detailed measurement?

Summary

May 1st target for full deployment

 Reference implementation documents – guides, recommendations, specifications, methods – to be released

Please stay tuned for more info!

moneer.helu@nist.gov thomas.hedberg@nist.gov william.bernstein@nist.gov